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Abstract In microtask programming, developers complete short self-contained
microtasks through the use of a specialized programming environment. For ex-
ample, given only a short description of the purpose of a function and a partially
complete implementation, a developer might be asked to identify, test, and imple-
ment an additional behavior in the function. Adopting a microtask approach to
programming tasks has been envisioned to offer a number of potential benefits,
including reducing the onboarding time necessary for new developers to contribute
to a project and achieving higher project velocity by enabling larger project teams
and greater parallelism. To investigate the potential benefits and drawbacks of mi-
crotask programming we conducted a controlled experiment. We focused our inves-
tigation on the context in which microtasking is most widely used, implementing
and debugging function bodies, and investigated the impact of microtasking with
respect to onboarding, project velocity, code quality, and developer productivity.
28 developers worked to implement microservice endpoints, either in the form of
traditional programming tasks described in an issue tracker or as programming
microtasks. Our study did not examine the design effort necessary to prepare for
microtask programming or consider how microtask programming might be applied
to maintenance tasks. We found that, compared to traditional programming, mi-
crotask programming reduced onboarding time by a factor of 3.7, increased project
velocity by a factor of 5.76 by increasing team size by a factor of 7, and decreased
individual developer productivity by a factor of 1.3. The quality of code did not
significantly differ. Through qualitative analysis of how developers worked, we ex-
plore potential explanations of these differences. These findings offer evidence for
the potential benefits that adopting microtask programming might bring, partic-
ularly in cases where increasing project velocity is paramount.
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Data availability statements

The study replication package® data that support the findings of this study are
available in Zenodo [3]. It includes the study materials, the test suite used to
evaluate contributions, and the code written by the participants.

1 Introduction

Inspired by microtasking systems for other tasks [60,38,9,27,37,32], microtask
programming envisions a form of work in which new contributors join a software
project and begin contributing within a short amount of time by completing pro-
gramming microtasks [43,46]. A microtask is a short, self-contained unit of work
with a specific objective. Microtask programming divides individual tasks to im-
plement a use case or fix a bug into numerous smaller microtasks.

Microtasks differ from traditional software issues, as might be found in an is-
sue tracker, along three dimensions: the time they take to complete, how much
context they require to do, and the specificity of the objective. Microtasks dif-
fer from traditional tasks in taking less time, requiring less context, and having
more specific objectives. A traditional task in a project issue tracker (e.g., fixing
a defect, implementing a new feature) might take hours to complete, whereas a
microtask may be completed in under 15 minutes [43,4]. To fix a defect in a tra-
ditional project, a developer might reproduce the defect by manually running the
program, inserting log or debug statements throughout the program, rerunning
the program, examining the output, reading various files in code, proposing a fix,
investigating the implications of this fix on various parts of the code, and then
eventually implementing and testing the fix. In contrast, microtasks have much
more specific objectives than this. For example, a microtask might involve identi-
fying a behavior in a specific function, writing a few lines of code to implement it,
and then testing it. Finally, in traditional projects, developers need to gain con-
siderable prior knowledge before starting work on tasks. For example, developers
need to understand architecture and design of the codebase, understanding how
the defect that they are working to fix interact with these and, as a result, what
functionality is likely to be relevant, what source files this functionality is imple-
mented in, and the ways in which this is implemented [76,68,75,31,19,10]. In a
microtask, developers need to know none of this context. Instead, developers may
be given a single function. As part of the microtask itself, there is a description of
the function, describing everything about the function a developer must know. In
this way, the context of a microtask is greatly reduced from the context required
in a traditional task.

Microtask programming adopts three core mechanisms for organizing work and
motivating and supporting contributors. Microtask programming reduces the ef-
fort required to (1) onboard developers onto a project, including understanding
the project structure and code and setting up a workspace [68,76,10,75,20,19].
To reduce this traditionally lengthy process, developers work within a specialized
preconfigured programming environment [4,41,43,45,24,23,55,64,46,42,80]. Pre-
configured environments offer an environment in which code and dependencies are
already set up and developers may immediately begin editing code.

L https://doi.org/10.5281/zenodo.4922866
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Microtasking changes the nature of (2) coordination, transforming tasks done
by a single developer into tasks done by multiple contributors. Whereas a single
developer might work to prepare a pull request for a new feature, in microtask
programming a number of crowd workers may contribute. Workers adopt partially
completed work, continuing or revising it based on their own plan, and continu-
ously offer feedback, through reviews, on each contribution made.

To incentivize the broader participation that microtasking enables, microtask-
ing systems adopt (3) gamification mechanisms [82]. Systems may measure fine-
grained progress, recording each microtask completion. From this, they provide
feedback at each step (e.g., review comments) as well as publicly visible signals of
contributions (e.g., points on a leaderboard).

Microtasking programming mechanisms are interdependent, each changing the
nature of programming work in ways that require new techniques to support. For
example, by offering continuous feedback (3), the impact of the reduced context
and knowledge developers have from a shortened onboarding experience may be
reduced (1). And by changing the mechanisms through which coordination occurs
(2), the impact of making tasks short and self-contained may be reduced.

Through these mechanisms, microtask programming has been envisioned to
offer important potential benefits for software development [43,44]. First, by re-
ducing the context necessary to program from a whole codebase to an individual
artifact and offering developers a preconfigured environment, microtask program-
ming may reduce onboarding barriers. Second, by deconxtextualizing, decompos-
ing, and reorganizing programming work, microtask programming is envisioned to
enable programming tasks to be divided and shared among developers, enabling
increased team size to increase project velocity.

At the same time, microtask programming may also bring new challenges man-
aging contributor knowledge and awareness of specific code modules. Developers
work without awareness of the complete program, potentially increasing the po-
tential for work to go off track. Conflicts might occur, either from two overlapping
changes to the same artifacts, or from conflicting changes in different artifacts.
Lacking a global view of the codebase, developers may write lower quality code,
as they are unaware of code with which to be consistent. By asking developers to
rapidly switch between working on microtasks which focus on different artifacts
within a project, developers may spend more time understanding new code and
less time programming.

Existing studies of microtask programming have demonstrated its feasibility,
showing that it is possible for it to be used to create small programs [4,43,42],
user interfaces [41,55,48], tests 2, and other artifacts [26,25,12]. Yet we are aware
of no prior work that has offered a direct comparison of microtask programming
to traditional programming.

We conducted a controlled experiment to answer four research questions:

RQ1: How does microtask programming impact onboarding?

— RQ2: How does parallelism in microtask programming impact velocity?
— RQ3: How does microtask programming impact code quality?

— RQ4: How does microtask programming impact developer productivity?

Table 2 summarizes the definitions of the constructs and measures used to
answer these questions. In this paper, we define onboarding time as the time it

2 https://www.utest.com
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takes for developers to join a project and complete their first contribution. We
measured this by tracking the time developers required by developers to begin
contributing and submit their first task (Fig. 2). We define project velocity as the
amount of programming work that a development team completes per unit of time.
We measured project velocity both as the average number of lines of code per and
the number of correctly implemented behaviors completed by developers in a 4
hour programming session. The code quality of an implementation encompasses
how maintainable it is and the ease with which other developers may read or
make changes to it. We measured code quality by asking a panel of experienced
JavaScript developers to assess code for its clarity, simplicity, and consistency. We
define developer productivity as the amount of programming work an individual
developer completes in a unit of time. We measured developer productivity as the
number of lines of code and correctly implemented behaviors completed per hour.

28 developers were randomly assigned to one of two conditions. All worked in 4
hours sessions to implement and debug function bodies of a small microservice in
JavaScript for an online-shopping-application and then completed a post-task sur-
vey at the conclusion of the study. In the control condition, 14 developers worked
individually in a traditional Integrated Development Environment (IDE) to com-
plete issues described in an issue tracker. In the microtask programming condition,
developers worked together as part of 7-person crowds to complete microtasks in a
dedicated microtask programming environment. We recorded and analyzed devel-
opers’ activity by collecting screencasts. We measured the time developers worked
and assessed their output through a hidden unit test suite as well as through a
panel of four anonymous reviewers.

We found that microtask programming significantly reduced onboarding time
from 164 minutes to 44 minutes, a factor of 3.7. In increasing team size from an
individual developer to a crowd of 7 developers, project velocity increased by a
factor of 5.76. As rated by a panel of developers anonymous to condition, the
quality of code written did not significantly differ. The productivity of individual
developers in the microtask programming condition decreased by a factor of 1.3.

In the rest of this paper, we survey related work, introduce microtask program-
ming, describe the study design, and report the results. Finally, we conclude with
a discussion of limitations as well as opportunities and future directions.

2 Related Work

Our investigation of microtask programming builds on a number of prior studies of
software development and crowdsourcing. In particular, a number of studies have
investigated the challenges developers face in onboarding (RQ1), determinants
of velocity for software projects (RQ2), the quality of code created in software
projects (RQ3), and the productivity impacts of microtasking complex information
work (RQ4).

Crowdsourced software engineering is the undertaking of any software engineer-
ing tasks by an undefined, potentially numerous, set of online workers recruited
through an open call [49]. TopCoder [40] and open-source software (OSS) devel-
opment are two examples of models of crowdsourcing software development [44].
Crowdsourcing software engineering envisions the potential to reduce the time



A Controlled Experiment on the Impact of Microtasking on Programming 5

to market, generate alternative solutions, utilize specialists, learn via work, and
democratize participation in software engineering [44].

Software developers, including in OSS development, face barriers that require
completing lengthy joining scripts to begin contributing [75]. This may dissuade
the busy or casually committed from contributing and restricts the pool of millions
of potential contributors to only the most committed. One solution to reducing
these barriers comes in the form of microtask programming. Microtask program-
ming decontextualizes the tasks done by workers, enabling a contribution to be
made in isolation from other ongoing work and with no requirements for prior
knowledge [43].

Microtask programming is a specific form of crowdsourced software engineer-
ing, utilizing an open call to contribute through a specific form: the microtask.
Microtasks are tasks which are short, self-contained, and with a specific objective.
For example, in Apparition [48], developers are given a highly specific task (to craft
visual behavior for a specific user interface element in a few lines of code) and may
complete this task in a few minutes. In contrast, other forms of crowdsourcing
work utilize tasks which are longer, not nearly as self-contained, and with broader
objectives. For example, on TopCoder, developers may be asked to participate in a
design competition. Developers are given a set of requirements and asked to create
a series of UML diagrams. Developers have access to the whole codebase. And the
competition may last for weeks. In this way, while microtask programming systems
are examples of crowdsourcing, other forms of crowdsourcing are not microtasking.

When new developers join a software project, they face a number of onboard-
ing barriers. Onboarding barriers include 1) identifying appropriate contacts and
receiving timely feedback, 2) identifying proper tasks and corresponding artifacts,
3) understanding project structure and setting up a workspace, 4) outdated and
unclear documentation 5) learning project practices and technical expertise [76, 68,
75,31,19,10]. Onboarding barriers impose a lengthy joining script that dissuades
less motivated potential contributors from becoming a contributor [67]. These
joining barriers are also an issue for traditional software development projects, re-
quiring a variety of practices to onboard new software development. For instance,
companies such as Google have extensive mentoring programs that new employees
participate in when joining [33]. However, even after four months, developers have
only shallow knowledge of a software project [65] and may require as much as three
years to become fluent [84]. However, as the average turnover rate at companies
such as Amazon and Google is around two years [58], many developers will never
be fully onboarded.

To address these barriers, a number of programming environments have been
designed to reduce one or more of these barriers, often as part of a microtask
programming environment where quick onboarding onto a project is crucial. These
environments often offer dedicated, preconfigured, environments, which require
much less setup for developers to get started in a new project (last column of
Table 1) [77,41,43,24,23,55,64,11,4].

The velocity of a software project is the rate of progress of the project team.
Velocity measures the amount of work that a project team completes (e.g., a num-
ber of requirements or user stories) in a unit of time (e.g., a sprint). From this
definition, it might be reasonable to expect that, if instead of employing a sin-
gle developer, a project were to instead employ several developers, velocity might
increase [57]. However, achieving this requires overcoming several challenges, in-
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cluding successful coordination, communication among team members, and or-
chestration of work [18]. The team lead or software architect must split work
into independent tasks so that developers do not interfere with each other’s ef-
forts. Managing and coordinating parallel development work is hard [18]. One
study of 222 open source projects revealed that the interdependence and distri-
bution of teams are key factors in increasing conflict levels [21]. In many software
projects, increasing the degree of parallelism is hard or impossible due to task
inter-dependencies and the context required by tasks [57]. Microtask approaches
to programming have been explored to address some of these issues, enabling
a higher degree of parallelism [41,25,26,47,55]. Achieving this requires effective
mechanisms for distributing work, managing context, generating microtasks, and
minimizing conflicts.

A number of studies have examined the quality achieved by software projects,
specifically the quality achieved by open source projects. There are several system-
atic approaches for evaluating the quality of software [71,5]. Studies comparing the
quality of code produced in open source projects have found that it is lower than
that what is expected in industrial projects [66,6,1]. There are several potential
reasons, including the lack of a formal risk assessment process, defect discovery
from black-box testing late in the process, unstructured and informal testing, and
the quality assurance methodologies used [1]. Some open source projects do not use
systematic quality assurance methods [83]. One study of over 20,000 Open-source
software (OSS) projects found that 38% lacked unit tests [39].

Measuring and even defining productivity in software engineering is challeng-
ing. The Oxford dictionary defines productivity as “the rate at which a worker,
a company or a country produces goods, and the amount produced, compared
with how much time, work and money is needed to produce them” [73]. Measur-
ing the productivity of software developers is challenging as the output created
by a developer in a development task can be hard to quantify [53,35]. Software
engineering researchers have not reached agreement on how to accurately measure
productivity [56]. Many studies have identified factors that influence developers’
productivity, such as scope and schedule [30,34,52,56]. Mercury [80] a mobile
microtasking system that allows programmers to continue their work on-the-go
is introduced and evaluated by a controlled experiment. Micro-producitivities in
Mercury help programmers continue their work on-the-go and instill comfort in
pausing work unexpectedly.

A number of studies have investigated the impact of microtasking on the pro-
ductivity of information workers completing non-programming tasks [29]. Micro-
tasking approaches which offer concrete plans with actionable steps can enable
workers to complete tasks with a higher level of productivity [70,29]. Microtasking
may result in more frequent task switches, as workers constantly switch task when
beginning each microtask [43]. However, workers in general often face interruptions
and may multi-task and attempt to complete several tasks simultaneously [16,15].
Reaching full productivity after an interruption may take 25 minutes [50]. While
interruptions may decrease the productivity of workers on large tasks, they have
less impact on a worker that completes the same task as a series of microtasks [13].
This is because interruptions which occur at task boundaries are less disruptive
and microtasks introduce more task boundaries. In addition, more of the context
needed to resume work is contained in the microtask itself [72,28].
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Table 1 Examples of microtask programming Systems
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s . Designers sketch .
esign describe it ole design . es
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on-the-go T T and Q/A resource

Other work has begun to investigate the impact of the use of crowdsourcing
within software projects [40,69]. Several studies have examined the use of Top-
Coder, one of the most mature crowdsourcing platforms, to build software projects.
One study compared TopCoder’s software development process with conventional
software development, finding that TopCoder had a lower defect rate (5 to 8 times
lower) at lower cost and in less time [40]. TopCoder claimed that their crowd-
sourced development approach reduced cost by 30%-80% compared with in-house
software development or outsourcing [49]. Crowdsourcing platforms such as Top-
Coder differ from microtasking in the granularity of tasks [44], where tasks are far
more larger and require days rather than minutes to complete [63,2]. Our work
builds on these studies, offering the first study specifically comparing a microtask
style of programming to traditional programming.

3 Microtask Programming

Microtask programming is a form of crowdsourcing programming where work is
carried out in the form of microtasks. In a microtask, a transient crowd worker is
given a short and self-contained task (e.g., label an image, write a one-sentence
summary of a paragraph), and individual contributions are then aggregated to-
gether to create a more extensive product (e.g., a labeled dataset of images, a
summary of a news article) [17,79,74,59].

Several systems have applied microtasking to programming, devising mecha-
nisms to decompose traditional programming tasks of implementing features or
fixing defects into microtasks (Table 1). For example, Apparition breaks down the
work of building a prototype user interface into microtasks [48]. As a designer
describes an interface in text, crowd workers implement the behavior of individ-
ual UI elements. In CodeOn, a developer working in a programming environment
speaks a request for help, automatically generating a microtask for crowd workers
to complete capturing relevant context [11]. In CrowdDesign, crowd workers may
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build a web app [55]. In Mercury [80], a programmer works individually to con-
tinue work on-the-go. All microtasks are completed in a mobile setting. Mercury
helps programmers with individual productivity. It focuses on task resumption
instead of the broader aspect of productivity. In CrowdCode, programming work
is completed through a series of specialized microtasks [46,43]. Workers write test
cases, implement tests, write code, reuse existing functions, and debug. In Crowd-
Microservices, crowd workers identify unimplemented behaviors from a description
of a function which they then test, implement, and debug [4]. While these systems
vary in a number of important aspects, they share several important characteris-
tics central to the experience of microtasking: a streamlined onboarding process,
an increase in the degree of parallelism in work, mechanisms for ensuring quality,
and a changed programming experience.

Core to the experience of microtasking systems is the idea of the crowd contrib-
utor, who can receive a microtask and complete it without needing to first complete
a lengthy onboarding process (RQ1). Studies of onboarding find that this can be
a substantial barrier [68]. Microtask programming environments envision reducing
onboarding through several mechanisms, including offering a preconfigured envi-
ronment and a self-contained programming task [4,43]. By offering a preconfigured
environment, developers need not spend time installing and configuring necessary
tools, downloading code from a server, identifying and downloading dependencies,
and configuring the build environment. Microtask programming reduces the need
to spend time understanding a codebase before contributing by decontextualizing
programming tasks [4,43].

Small microtasks bring the possibility of increasing parallelism in software de-
velopment (RQ2). By parallelizing work across many developers, microtasks may
enable work to be completed in less time. Key to achieving this is effective mech-
anisms for coordination and aggregation. This enables workers to obtain feedback
on their contributions early, before wasting time on dead-end contributions, and
to coordinate contributions to reduce conflicts. For example, Apparition incorpo-
rates a todo list and locks access to artifacts by other workers when a microtask
is in progress to reduce conflicts [48]. CodeOn facilities coordination by ensuring
workers always work with the most recent code.

Microtask programming approaches use a variety of techniques to ensure the
quality of the resulting software artifacts (RQ3). Low quality contributions may
occur due to several reasons, including workers who do not have sufficient knowl-
edge, workers who put in little effort, or workers who are malicious [36]. Commer-
cial crowdsourcing approaches address these quality concerns through mechanisms
including rankings and ratings, reporting spam, pre-approving tasks, and skill fil-
tering [62]. CrowdCode and CrowdMicroservices employ unit tests, code reviews,
and gamification techniques to ensure quality [43,4]. In CrowdDesign, a manager
reviews the contributions of crowd workers and accepts or rejects them [55].

In decontextualizing work and requiring developers to constantly switch their
focus between different artifacts, microtask programming may potentially reduce
developer productivity (RQ4). As workers rapidly switch between microtasks, de-
velopers may spend more time understanding specifications and code and less
time programming. For example, in CrowdMicroservices, workers may read a new
function specification, unit tests, and implementation at the beginning of every
microtask.
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Write your code in the function editor below Report an issuewith the function @ @

[
2 * A user may compare a browsed item with other similar items, implementing the function to find similar items with a browsed item. The
function should search among the items in the store that their name includes the name of the browsed item, if similar items are more
than 20 items, The function only returns top 20 items that have rating higher rating (ex: there exist 35 similar items, The function
should only return the 20 items which higher rating), if the function could not find any similar item it returns empty collection

. The user already logged in the system and tried to comparing items, the function should store a log from the items that the

have seen, this can be useful for future item recommendations. The function may make use of a 3rd party persistence library. fThe function
Should also check the validity of imput arguments, the function should check the information of the user, information of the item

to not be empty or null, if it is invalid a 'TypeError' exception should be thrown with a description.

10 *
11 * @param {String} userId - it is a user identification
12 * @param {String} itemName - name of an item

13 * @return {item[]}
H —L

15 function fetchTopMostSimilarItems( ) H

16 //Implementation code here

17 if((itemName===null || itemName==="") || (userId===null || userId==="")){

18 throw new TypeError("IllegalArgumentException");

19

20

21 var 1istOfTimeinDB - FetchObjectsImplementation('item'); \/

c"' Edit Tests in the bellow ﬁ Run Tests in the bellow J
- X Remove test
Description of the choosen behavior. Type (asserion  2)©

throw TypeError for invalid input

Code 0

1 var badfn = fetchTopMostSimilarItems(l,null);
2 expect(badFn).to.throw(TypeError);

Fig. 1 In the CrowdMicroservices microtask programming system, developers complete mi-
crotasks in which they (1) identify a behavior from the description of a function, (2) write a
unit test for the behavior, and (3) implement and debug code for the behavior.

In our study, we chose to examine the CrowdMicroservices system [4] as an
example of a microtask programming approach (Fig. 1). In CrowdMicroservices, a
client, for example, a software design team, first defines a desired behavior of a
microservice by authoring textual descriptions of endpoints. Contributors then log
in to a web-based programming environment, view tutorial content explaining the
environment, a project summary, and list of endpoints and their description. De-
velopers fetch microtasks, which are assigned at random, and complete two types of
microtasks. In Implement Function Behavior, developers follow a behavior-driven
development methodology to (1) identify a single behavior from the description
of a function that is not yet implemented, (2) write a unit test for the behavior,
and (3) implement and debug the behavior (Fig. 1). To ensure that developers do
not lock contributions to a function by taking too long to complete a microtask,
developers have 15 minutes to submit the microtask; otherwise, the microtask pro-
gramming environment skips the microtask. In the Review microtask, developers
examine a microtask completed by another developer, review a diff of the code
change, give feedback on the microtask, and assign it a rating to accept or reject
it. To support gamification, contribution ratings are then used to generate a score
for each developer. This score is publicly visible to the entire project crowd on a
leaderboard. After all microtasks have been completed, a client may publish the
microservice, automatically deploying the microservice to a hosting provider.

4 Method

The goal of our study was investigating the impact of microtasking on program-
ming, focusing on the effects of working as part of a crowd on short, decontextu-
alized, self-contained microtasks as compared to traditional individual program-
ming work. Specifically, we investigated the effect of microtasking on onboarding
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(RQ1), project velocity (RQ2), code quality (RQ3), and developer productivity
(RQ4). To investigate our research questions, we conducted a controlled exper-
iment where participants implemented and debugged function bodies of a small
JavaScript microservice. To compare microtask programming, as embodied in mi-
crotask programming environments, to traditional programming, we varied several
aspects between each condition. As microtask programming decomposes a long
task into a number of short tasks which are completed by a crowd, developers in
the control condition worked individually, while developers in the microtask pro-
gramming condition worked with other developers as part of a crowd. As microtask
programming offers specialized programming environments to ease onboarding for
developers, developers in the microtask programming condition were furnished
with a specialized microtask programming environment, while developers in the
control condition worked with their own preferred IDE and were responsible for
onboarding activities onto the project.

We recruited 28 participants and randomly assigned them to a control or ex-
perimental condition. All worked in 4 hour sessions to implement a small mi-
croservice in JavaScript for an online-shopping application. In the experimental
condition, participants worked using programming microtasks. Experimental par-
ticipants were organized into two sessions. In each session, 7 participants worked
together simultaneously as a crowd. In the control condition, 14 participants each
worked individually, isolated from other participants without any coordination or
exchange of contributions. The study consisted of three main parts: tutorials, a
programming task, and a post-task survey. During the study sessions, we recorded
and collected screencasts as well as collecting the code created in each session. We
then evaluated the code produced through a hidden test suite as well as a panel
of reviewers anonymous to conditions. From this data, we calculated several mea-
sures to examine the impact of microtask programming on onboarding, velocity,
code quality and developer productivity.

4.1 Setting

Participants in both conditions worked within 4-hour study sessions. Control par-
ticipants worked individually in 17 4-hour sessions. We excluded the data of 3
participants that dropped out from the study, leaving 14 participants. Microtask
participants worked in a crowd, taking part in either of two independent 4-hour
sessions. We invited 8 participants for each session, and in each session, one par-
ticipant dropped from the study. All study sessions were conducted remotely, with
all interactions between participants and experimenters occurring via Skype or
email.

Participants in both conditions were free to use the Internet to find code or so-
lutions to their challenges. We worked to create a setting close to each participants’
everyday environment. In the registration form, we asked control participants to
give us information about the tools they use in their daily development. We then
installed these tools before the experiment. Developers in the control condition
connected remotely to our laptop via TeamViewer or AnyConnect, and they were
free to use or install any other tools with which they were familiar. As developers
face lengthy joining scripts in their onboarding process [75], we tried to simulate
onboarding barriers. In the control condition, developers needed to set up the en-
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vironment, which included installing npm dependencies and building the code. We
chose to ask participants to connect to our laptop to control for potential differ-
ences between participants in the processing power of their computer. Participants
in the experimental condition worked on their local machine, using the microtask
programmaing environment through a web browser.

4.2 Participants

We recruited participants who met two inclusion criteria: (1) at least six months of
experience in JavaScript and (2) proficiency in English. To simulate the geograph-
ically diverse nature of crowd work, we recruited participants broadly. We dis-
tributed an online flyer on social networks, including Facebook, Twitter, LinkedIn,
and Slack groups. One hundred forty-four responded and completed a registration
form, where we gathered demographic data. Sixty respondents met our inclusion
criteria. We invited all 60 to participate, and 33 chose to participate. Two ex-
perimental participants and three control participants left the study due to issues
including technical issues in remotely connecting, personal problems, or feeling
overwhelmed. We excluded the data of these 5 in our analysis. We report results
from the remaining 28 participants.

The participants were geographically diverse, residing in Brazil, Canada, India,
the Netherlands, Spain, and the United States. Participants had a median of 4.0
(mean = 5.0) years experience programming, a median of 2.0 (mean = 2.6) years
experience in JavaScript, and a median of 1.7 (mean = 2.6) years of industry
experience. 35.1% reported being a student in computer science or a related field,
and 64.9% reported working as a software engineer. Throughout this paper, we
refer to control participants as C1 to C14 and experimental participants as M1
to M14. Participants were compensated with $20 in Amazon gift card credit per
hour.

4.3 Task

Participants in both conditions worked to implement and debug function bodies
of an online-shopping microservice. We chose this application as we expected its
main use cases to be familiar to participants. A task description based on an
online-shopping app’s key use cases was created for a microservice and used in
both conditions. In the control condition, this description was provided through
nine GitHub issues. In the experimental condition, this description was provided
through a Client-Request with nine endpoints. Conditions varied only in that the
the experimental condition participants were given a signature of each function as
part of the microtask. The rest of the tasks’ decomposition and task descriptions
were identical for both conditions. We piloted the task to ensure the task was of
an appropriate size and difficulty. After two pilots, we found it to be too easy, so
we added additional complexity to the service descriptions.

Participants in both conditions worked in a similar context, with several dif-
ferences arising from the experimental manipulation. To simulate the conditions
of a traditional software project, participants in the control condition began with
a pre-existing microservice project consisting of 2035 lines of code, implemented



12 Emad Aghayi, Thomas D. LaToza

using Express.js. It included an HT'TP endpoint example, which participants were
able to copy and edit to create function signatures. In the microtask condition, par-
ticipants could only see the code for the function associated with each microtask.
In microtask programming, the tutorials included an example unit test. Therefore,
a unit test example was included in the codebase of control participants. Microtask
programming makes use of a preconfigured IDE, in which all libraries and depen-
dencies are installed. Because of that, experimenters for the control group created
all configurations and installed all required dependencies of an Express.js 3 pro ject
before participants began work.

Participants in both conditions made use of the Firebase persistence API 4.
All participants had access to a wrapper of the API. In the microtask condition,
participants could not see the implementation of the wrapper, as it was embedded
in the preconfigured programming environment, while in the control condition the
code of the wrapper was included in the codebase.

4.4 Procedure

In the control condition, each participant worked alone on his or her task in an
individual study session. In the experimental condition, participants worked in
shared sessions containing a crowd of 7 participants. All participants completed
three steps within a 4 hours session: tutorials (20 minutes), a programming task
(205 minutes), and a post-task survey (15 minutes).

Step 1: Tutorials: All participants first completed tutorial materials on the
programming tools used in the study. Control participants completed a three part
tutorial. It first included an IDE tutorial to ensure they understood the basic
features of their chosen IDE. In the second part, as control participants needed
to use GitHub to clone, commit, and push code to a repository, a quick review
was given of these steps. Control participants were also given a quick tutorial of
writing unit tests using Mocha. Participants could choose to skip tutorials they
felt they did not need. Experimental participants completed a tutorial explaining
the unfamiliar microtask programming environment they would be asked to use,
including background information about the environment and concepts, through
a 8 minute video and a series of written explanations. All participants had up to
20 minutes to complete this step.

Step 2: Programming Task: Control participants first opened their desired IDE,
cloned the code from a GitHub repository, installed npm dependencies, and built
the codebase. Control participants then went to the Issues page of the repository
and selected issues to address. Control participants were free to work on issues in
any order. Writing unit tests was not required, but participants were free to write
unit tests as they saw fit. Microtask programming participants used the Crowd
Microservices preconfigured web-based IDE and did not need to install any tools.
All participants had 205 minutes to work on the programming task.

Step 83, Post-task Survey: At the conclusion of the task, all participants com-
pleted the post-task survey containing open-ended questions about their experi-
ences in the study. Participants were asked to share challenges they experienced

3 https://expressjs.com/
4 https://firebase.google.com/
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Table 2 Summary of RQs, measures, and data sources.

Measures Data source (DS)
. Minutes to complete the DS3: Screencasts
RQL Onboarding first line of code DS2: IDE Log
time
Minutes to complete the DS3: Screencasts
first microtask or issue DS2: IDE log

# correctly implemented

. - DS5: External Test Suite
behaviors per session

RQ1: Project

Velocity
Llr.les of code . DS1: Final Code
written per session
RQ3: Code Mean scores of clarity, consistency, . . .
quality and simplicity by panel DS6: Quality Ratings

# correctly implemented

behaviors per developer hour DS5:External Test Suite

RQ4: Developer

productivity
Final lines of code written DS1: Final Code
per developer hour

RQ 1-4 Qualitative report DS4: Survey

DS3: Screencasts

in onboarding, working with tutorials, readme pages, and instruction, setting up
and using their programming environment, and understanding the codebase.

4.5 Data collection and analysis

We collected a broad range of quantitative and qualitative data from 6 different
data sources (DS 1-6). Table 2 summarizes the data we collected.

DS1, Final Code: we collected the final code of control group sessions from the
GitHub repository and from the microtask programming sessions.

DS2, IDE Log: we collected log data generated by the microtask programming
environment, including participant actions fetching, skipping, and submitting mi-
crotasks, and asking or answering questions.

DS3, Screencasts: we collected screencasts of participants’ work on their tasks,
112 hours in total. The experimenters watched the screencasts to identify on-
boarding activity as well as qualitatively describe how developers worked in the
programming tasks.

DS, Post-task Survey: we collected data through a post-task survey which all
participants completed. Each condition had a specialized survey containing open-
ended questions addressing the specific nature of work in each condition. We used
thematic analysis in the analysis of these surveys.

DS5, Ezxternal Test Suite: to measure the output created by participants, we
created an Ezternal Test Suite. Working from the nine issues or endpoints given
to participants, we identified 39 distinct behaviors and wrote a unit test for each.

DS6, Quality Ratings: to assess the quality of the code written in each session,
each of the session’s final codebases was separately evaluated by four panelists.
Panelists were anonymous to condition. Panelists evaluated 16 codebases (two
created by microtask programming participants and 14 created by control partic-
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Fig. 2 Activities related to onboarding. Developers read tutorials until cloned code or open mi-
crotask programming environment (T0 to T1), explored and learned programming environ-
ments (T1 to T2), began work on the first task until writing first line of code (T2 to T3), and
began work on the first task until writing their first microtask or issue (T3 to T4).

ipants) for their clarity, simplicity, and consistency. We then created an overall
quality score by averaging scores across the 3 criteria.

To answer RQ1 (onboarding), we measured the time developers spent onboard-
ing. In both conditions, we manually watched the screencasts (DS3: Watching
Screencasts) and identified the points of time at which developers began activities
strongly related to onboarding (Fig. 2). In addition, we used the microtask pro-
gramming IDE’s logs (DS2) to identify when developers completed the tutorials,
fetched the first microtask, and finished the first microtask.

To answer RQ2 (project velocity) and RQ4 (developer productivity), we used
the FExternal Test Suite (DS5) and measured the lines of code developers wrote
(DS1). We used the FEzternal Test Suite to measure the behaviors successfully
implemented at the end of each session. In addition, we counted the lines of code
written in each session.

The quantitative data collected to answer RQ1, RQ3,and RQ4 were normally
distributed, based on a Kolmogorov-Smirnov test. To answer research questions
RQ1, RQ3, and RQ4, we used a Welch test, as the two conditions were non-
overlapping and had unequal variances.

5 Results
5.1 RQ1: How does microtask programming impact onboarding?

To investigate how a microtask style of work impacts the time necessary to on-
board onto a new project, we measured the time developers spent onboarding.
We define onboarding as the orientation time in which a new developer adjusts
to and becomes productive within a project [8]. We conservatively identified the
points of time at which developers began activities strongly related to onboarding
(Fig. 2): time spent working in tutorials until participants first cloned code or
opened the microtask programming environment (TO to T1), time spent exploring
and interacting with the programming environment, and other resources such as
readme pages until participants began work on their first task (T1 to T2), time
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from beginning work on their first task until writing their first line of code (T2 to
T3), and additional time completing their first implementation microtask or issue
(T3 to T4). In characterizing onboarding bellow, we focus on reporting the time
required to write the first line of code (T0 to T3) and the time needed to finish
the first implementation microtask or issue (T0 to T4). In some cases, participants
were toggling back and forth, such as rereading tutorials. In these corner cases,
we considered the first checkpoint developers reached. For instance, we measured
T4 as the time developers completed microtasks or issues regardless of developers’
time spent rereading tutorials or searching on the Internet.

Overall, microtask programming significantly reduced onboarding time, mea-
sured both from the beginning of the session to the writing the first line of code
(TO to T3) and to completing the first task (TO to T4) (Fig. 3). The time for
microtask programming participants to finish the first line of code (T0 to T3) was
significantly less (Welch’s t(26) = 3.03, p = 0.002, data was normally distributed),
reducing onboarding time by a factor of 1.3 to 39 minutes (SD = 13) compared
to 52 minutes (SD = 8) for control participants. Microtask programming partic-
ipants completed their first task (TO to T4) significantly faster (Welch’s t(26) =
15.2, p = 0.00001, data normally distributed) in 44 minutes (SD = 11) compared
to 164 minutes (SD = 25) for control participants, reducing time by a factor of
3.7. Microtask participants spent 18 minutes interacting with the tutorials (TO to
T1), 13 minutes learning the programming environment (T1 to T2), 7 minutes
writing their first line of code (T2 to T3), and 12 minutes completing their first
task (T2 to T4). In contrast, control participants spent 8 minutes on the tutorials
(TO to T1), 0 minutes learning the programming environment (T1 to T2), 45 min-
utes writing their first line of code (T2 to T3), and 156 minutes to complete their
first issue (T2 to T4). One cause of the shortened time to complete a microtask is
the smaller granularity, as compared to a traditional issue. On average, the first
submitted microtask had seven lines of code, including four in the function body
and three in unit tests. Control participant’s first issue included 51 lines of code
in functions and 0 in unit tests.

To identify potential explanations of the differences in onboarding times, we
analyzed the 112 hours of screencasts and data from the post-task interviews to
identify challenges faced by participants in each group and how participants chose
to address these challenges. Both control and microtask programming participants
experienced challenges getting up to speed with their programming environment.
Control participants faced several challenges and spent substantial time configur-
ing their programming environment. While free to use any IDE or tool they de-
sired, they still experienced challenges cloning code from GitHub, building code,
and installing dependencies. In contrast, the preconfigured environment available
to microtask participants enabled them to not spend time on these activities. How-
ever, microtask participants instead reported being overwhelmed by the many new
concepts in the programming environment presented in the tutorials, including the
behavior-driven development process.

”There was a lot of feature involved and it was hard to understand it all
and remember it without having ever used the service.” - (M5)

As a result, they initially reported being confused and unsure of how to contribute.
Nevertheless, after microtask programming participants worked on their first tasks,
they gradually learned how to use the novel workflow. In contrast, control partic-
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Fig. 3 Onboarding time for control (C1 to C14) and experimental (M1 to M14) participants,
including mean onboarding time by condition.

ipants did not have problems with how to start and spent 0 minutes initially
learning the programming environment (T1 to T2). In resolving challenges, con-
trol participants generally used Internet searches while microtask programming
participants instead used code documentation, the readme, and tutorials.

Despite the modest 2035 LOC size of the codebase, understanding the structure
of the codebase took substantial time for control participants, replicating existing
findings [76,19]. Control participants tried to understand the codebase by opening
various files and reading code.

” At first I was trying to determine how the project has been structured in
terms of its architecture. The reason was it is going to help me to better
locate the code and methods I would write... ” - (C1)

Most reported that the codebase was standard and straightforward. We did not
observe challenges by microtask participants understanding the structure of the
codebase, as each microtask focused on only a single function.
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Learning how to work with an API (the Firebase persistence API) was a chal-
lenge for control participants but not microtask programming participants. Par-
ticipants in both conditions had access to a simple wrapper for the API, but
the microtask programming environment hid its implementation and exposed only
its signatures while control participants could see its implementation. Control
participants also had access to more extensive documentation. While control par-
ticipants could simply use the wrapper to complete their tasks, they instead spent
time reading documentation on the Internet to understand the underlying imple-
mentation.

... not knowing the FireBase was and still is the biggest challenge. I had no
experience..., so I was like, ”How am I gonna do this?” ... At these points,
my productivity decreased very much...” - (C3)

The choice of the first task may also have impacted the necessary onboard-
ing activities. Microtask programming participants were randomly assigned tasks,
which they could skip if they desired. While familiarizing themselves with the
environment, they preferred to skip hard microtasks until they found microtasks
focusing on simple implementation logic like checking corner cases. After starting
with simple microtasks, they were able to submit their first tasks quickly. In con-
trast, control participants choose issues by reading issue titles and did not exhibit
any clear pattern in selecting issues. They sometimes worked on their first issue
for hours.

Takeaways from RQ1: microtask programming reduced the onboarding
time required by a developer to write their first line of code by a factor
of 1.3 and the time to complete their first task by a factor of 3.7. The
preconfigured but novel programming environment, reduced task size, and
reduced need to understand the codebase structure and implementation
may have contributed to these differences.

5.2 RQ2: How does parallelism in microtask programming impact
velocity?

The project velocity is the rate of progress of a software development team. By
decomposing larger programming tasks (e.g., implement a feature) into paralleliz-
able microtasks, microtask programming is envisioned to increase the velocity of
programming work within a software project [47]. Measuring project velocity is a
challenge, as it is difficult to recruit participants with professional experience who
are willing to work for an unbounded amount of time. Therefore, rather than fix
the amount of work to complete (i.e., the whole application) and measure time,
we instead fixed time (i.e., 205 minutes) and measured the work completed. That
is, we examined the impact of increasing the number of participants per session
on the output generated by the session. We measured the work completed through
two complimentary measures: lines of code and the number of correctly imple-
mented behaviors, as measured by executing the Ezternal Test Suite. We assumed
that if developers can correctly implement more software logic in a session, they
would deliver a completed project in less time. Therefore, a larger number of lines
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Fig. 4 The number of correctly implemented behaviors by session. The total number of be-
haviors was 39.

of code or correctly implemented behaviors in a session indicates a higher project
velocity.

Increasing the number of participants per session from 1 in the control condi-
tion to 7 in the microtask programming condition increased the amount of work
completed per session, as measured both by the number of behaviors implemented
and the lines of code written in each session. As Fig. 4 indicates, the number of
behaviors successfully implemented increased by a factor of 5.7, from 13% (5.28 of
39) to 75% (29.5 of 39). The mean number of lines of code implemented increased
by a factor of 9.1, from 115 lines of code (115 in functions and 0.4 in unit tests )
to 1050 (275 in functions and 775 in unit tests).

Takeaways from RQ2: Increasing the number of developers by a factor
of 7 in the microtask programming condition increased the number of be-
haviors successfully implemented by a factor of 5.7 and the number of lines
of code written by a factor of 9.1.

5.3 RQ3: How does microtask programming impact code quality?

The code quality of an implementation encompasses how maintainable it is and
the ease with which other developers may read or make changes to it. This includes
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Fig. 5 The percentage of panel ratings of code quality for clarity, consistency, and simplicity
for control and microtask programming codebases.

following conventions such as meaningful variable names, appropriate code struc-
tures, and appropriate formatting [51]. To assess the quality of the implementation
created in each session, a panel of four was assembled, with a median of 4 years of
industry experience and a median of 2 years experience with JavaScript. Each of
the 16 session’s final implementation was evaluated by four panelists separately.
Panelists evaluated 16 codebases (two created by microtask programming par-
ticipants and 14 created by control participants) for their clarity, simplicity, and
consistency. Panelists were anonymous to condition. For each metric, panelists
gave a score from 1 to 5: 1: poor, 2: fair, 3: satisfactory, 4: very good, 5: excel-
lent. We then calculated a mean score for each codebase by averaging across all 4
panelists. Finally, we created an overall quality score by averaging the 3 metrics.

Overall, we found that panelists rated code created through microtask pro-
gramming as higher in quality, with a quality score of 3.7 (SD = 0.12) vs. 3.3
(SD = 0.33) for control participants (Table. 3). However, this difference was not
significant (Welch’s t(14) = 1.35 and p = 0.09, data normally distributed). The
effect size for Glass’s delta is 2.14 and for Cohen’s d = 0.99. This indicates that
the mean quality score of the microtask programming codebases were at the 76y,
percentile of the control group. For each quality metric, microtask programming
codebases were rated by panelists as being higher quality, with 3.8 vs. 3.2 for clar-
ity, 3.6 vs 3.4 for simplicity, and 3.6 vs. 3.5 for consistency. The diverging stacked
bar chart in Fig. 5 shows the percentage frequency of panelists’ scores, where each
stack represents the frequency of each score. For instance, the ” Consistency(M)”
bar for microtask programming indicates scores of 12.5% poor, 12.5% fair, 0%
satisfactory, 50% very good, and 24% excellent.

One difference between the microtask programming and control conditions
which may have led to differences in quality was the presence of Review microtasks
in the microtask programming condition. In Review Microtasks, participants gave
feedback on each contribution made by others and accepted or rejected those con-
tributions. We counted the number of submitted Review microtasks. Participants
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Fig. 6 The number of correctly implemented behaviors per hour by condition.

submitted 94 (48 accepted, 46 rejected) in the first session and 130 (87 accepted,
43 rejected) in the second. In the post-task survey, participants reported that the
review microtasks were helpful.

Writing unit tests facilitate maintenance activities [7]. Participants in the mi-
crotask programming condition wrote substantially more unit tests than those in
the control condition. microtask programming significantly increased the lines of
test code written per developer (Welch’s t(26) = 5.1, p < 0.00001) from 0.5 lines
(SD = 1.5) to 97 lines (SD = 68). In the control condition, only one developer
implemented one unit test.

Takeaways from RQ3: Code quality, as assessed by a panel anonymous
to condition, did not significantly differ between traditional and microtask
programming. Microtask programming participants made judgments about
code quality through reviews and wrote significantly more unit tests.

5.4 RQ4: How does microtask programming impact developer
productivity?

Software productivity is the amount of useful output created per unit of time.
Output may be directly created, such as by implementing software logic or writ-
ing unit tests, or indirectly created, such as by reviewing the contributions of
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other developers or answering questions on Q&A forums [61]. Developers are more
productive when they create more direct and indirect output in less time. We mea-
sured output through two complimentary measures: lines of code and the number
of correctly implemented behaviors, as measured by executing the Ezternal Test
Suite.

We measured direct productivity by considering developers’ contributions to
the final output. As all developers in each session contributed to the final output,
we divided the final project velocity of each session by the number of developers in
each session. The direct productivity of developers in the microtasking condition
decreased by 25% in behaviors per hour and increased by 29% in lines of code per
hour. In the control condition, individual developer’s productivity ranged from 0.3
to 3.5 behaviors per hour, with an average of 1.6 behaviors per hour. In the micro-
task programming condition, developers had productivity of 1.2 behavior per hour
(29.5 behaviors in 205 minutes by seven developers). Developers in the control
condition implemented on average between 5 and 58 lines of code per hour, with
a mean of 34. 99.6% of the lines written were implementing functions and 0.4%
in unit tests. Developers in the microtask programming condition implemented 44
lines of code per hour. 26% of the lines written were implementing functions and
74% in unit tests.

One difference in the microtask condition was that developers wrote code in
microtasks, which other developers may later have edited or deleted. To investigate
the impact of this on productivity, we computed a measure of incremental direct
productivity. For each microtask, we created a diff and measured the total number
of lines of code updated, added or deleted. In addition, we ran the unit test suite
to assess the delta in behaviors correctly implemented.

As measured through incremental contributions, microtask programming did
not decrease productivity, measured either through behaviors per hour or lines
of code. Microtask programming increased the number of behaviors successfully
implemented per hour by a factor of 1.4, although this difference was not significant
(Welch’s t(26) = 1.54, p-value = 0.067, data normally distributed). Microtask
participants completed 2.3 behaviors per hour (SD = 1.3) compared to 1.6 (SD =
1.0) for control participants (Fig. 6). microtask programming significantly increased
the number of lines of code implemented per hour (Welch’s t(26) = 2.5, p < 0.010,
data normally distributed), increasing the lines of code written from 34 per hour
(SD = 13) to 60 per hour (SD = 36). However, only 54% of the code developers
initially submitted in a microtask still existed at the end of the session.

To understand how differences in what developers did might have impacted
productivity, we analyzed the screencasts to identify the fraction of participants
that engaged in specific activities. Microtask participants spent their time read-
ing tutorials (92% of participants), coding (100%), debugging (14%), reviewing
(100%), reading Newsfeed messages (100%), and reading and answering questions
(100%). In contrast, control participants spent their time overcoming onboard-
ing barriers (100%), understanding the codebase (100%), searching the Internet
(42%), coding (100%), and debugging (7%). In addition, we used the log data in
the microtask programming condition to assess how microtask participants spent
their time. Microtask participants spent 60% (mean = 117 mins) of their time
working on microtasks, 20% (mean = 34 mins) on Review Microtasks, and 40%
(mean = 83 mins) on Implement Function Behavior Microtasks). They spent the
remaining 40% of their time on non-coding activities such as skipping tasks, read-
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ing and answering questions, reading Newsfeed messages, reading content on the
dashboard, context switching, and taking breaks.

Task switching might potentially impact the productivity of developers. Mi-
crotask programming developers switched tasks 12.7 times more often than with
traditional programming. Microtask programming developers worked on an aver-
age of 31.78 microtasks, while developers in the traditional condition addressed
2.5 different GitHub issues.

Some participants reported that the gamification elements in the microtask
programmaing condition may have increased their motivation, which might have
also impacted their productivity. This finding is consistent with the previous stud-
ies that found humans use different sets of nonverbal behaviors to express their
prestige and dominance [81]. Microtask programming participants had differing
opinions about the Leaderboard, viewing it as stressful, a source of motivation, or
helpful gamification. Participants reported that before fetching a microtask, they
looked at the Leaderborad, and that by watching the scores of others, they were
motivated to increase their score and ranking. Participants could achieve this by
submitting more microtasks with higher quality scores.

”T like the competitiveness feel it brings with the points system, rating and
all that. It definitely made me to contribute more. ” - (M13)

Takeaways from RQ4: The direct productivity of developers in the mi-
crotasking condition decreased by 25% in behaviors per hour and increased
by 29% in lines of code per hour. Only 54% of the code initially written by
microtask participants still existed at the end of the session.

6 Limitations and threats to validity

As with any empirical study, our study has several important limitations and
potential threats to the internal and external validity of the results.

Our study had several potential threats to internal validity. The first potential
threat to internal validity was that participants in the control condition remotely
connected to our laptop to work. Although they were free to install any tool-
set they desired, the remote connection might have reduced their productivity.
Because of connectivity problems, two control participants in the middle of the
study switched from TeamViewer to the AnyConnect tool. This switch distracted
participants. In addition, several participants were unable to use their standard
shortcuts. Microtask programming participants worked in the web-based IDE in
the Chrome browser on their local devices.

A second potential threat to internal validity was the novelty of the microtask
programming concepts and the environment for participants. Microtask program-
ming participants had no prior experience with the programming environment.
In contrast, control participants were working in programming environments with
which they were already familiar. The unfamiliarity of the programming envi-
ronment may have increased the onboarding barriers for microtask programming
participants or made them less productive throughout the tasks. Our study re-
sults simulate a setting in which developers are working using microtask program-
ming for the first time. because of that as Figure 3 shows microtask programming
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developers spent 13 minutes on learning programming environment but control
participants spent 0 minutes.

A third potential threat to internal validity is the study setting of observing
participants as they worked. If experimenters did not observe the participants,
they might be more productive. In the control condition, participants were ob-
served synchronously while in the experimental condition participants were ob-
served asynchronously. Being observed might change the work style of the par-
ticipants. The experimenter tried to mitigate this risk by emphasizing that the
goal of the study was was to evaluate the approach and by not interacting with
participants during the study.

Our study also had potential threats to external validity. To imitate the open-
call process of microtask systems, we recruited participants with a wide range
of of backgrounds from our university and globally via social networks like Face-
book, Twitter, LinkedIn, and Slack. The results might vary for developers who are
exclusively more experienced or more novice.

The second threat to external validity is that the tasks given to participants
might differ from those used in traditional development projects. To ensure that
the task descriptions in both conditions were the same, the control condition task
descriptions were more detailed than typical in traditional development. For ex-
ample, they included descriptions of how to handle specific error messages. More
detailed descriptions of the task may have made the task in the traditional pro-
gramming condition easier, as developers had less design work to do. In this way,
our results may underestimate the differences between microtasking and tradi-
tional development. Simultaneously, developers in both conditions benefited from
the design work done to create the more detailed task descriptions. In addition,
we did not measure the time required to do this work to create these task descrip-
tions. In another study [63], we measured the effort needed to prepare function
descriptions and method signatures in an industrial project making use of micro-
task programming. One designer and one dedicated software engineer worked for
two weeks to analyze requirements and prepare the design materials, which were
then used by a crowd of 6 workers to implement a web app over the course of 4
weeks. Of course, this encompassed both doing the design work itself, including
writing the function signatures, and is not directly comparable to the effort re-
quired only to translate an existing design into function signatures. So it is not
currently possible to accurately measure the time required to create function sig-
natures from a completed function description. In principle, more of this design
work might potentially be done by the crowd. Crowd design workflows have begun
to be explored, which might potentially be adopted for this purpose [78].

Another potential threat to external validity is the choice of the programming
task. We chose a synthetic task designed to reflect typical microservice backends.
For a more challenging programming task or with a larger codebase, our results
might vary. In particular, onboarding barriers might be larger and the variance be-
tween participants might be higher for more challenging tasks. This might impact
the effect of microtasking on project velocity and developer productivity either
positively or negatively.
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Table 3 Summary of findings comparing microtask programming to traditional programming.
RQ1: Onboarding: the orientation time in which a new developer adjusts to and becomes
productive. RQ2: Project velocity: the progress of the team towards project completion. RQ3:
Code quality: the maintainability of code through its clarity, simplicity, and consistency. RQ4:
Developer productivity: the amount of useful output created per unit of time.

Traditional Microtask

Measures . .
Programming Programming

Mins to complete

R.Ql: Onboarding the first line of code b2 i
time
Mins tQ complete .the 44 164
first microtask or issue
RQ2: Project # correctly implemented 5.28 of 39 29.5 of 39
. behaviors per session
velocity
Lines of' code written 115 1050
per session
RQ3: Code Mean quality score
R 3.3 3.7
quality by panel
# correctly implemented
RQ4: Developer behaviors per developer 1.6 1.2
productivity hour
Final lines of code written 34 44

per developer hour

7 Discussion

Microtask programming envisions a software development process in which large
crowds of transient developers build software through short and self-contained mi-
crotasks, reducing barriers to onboarding and increasing participation in software
projects. To achieve this, microtask programming adopts four core mechanisms:
a preconfigured IDE, decomposition of tasks into microtasks, new coordination
mechanisms, and gamification and feedback. We conducted the first direct com-
parison between microtask programming and traditional programming in imple-
menting and debugging function bodies of a microservice. We investigated the
impact of microtask programming on onboarding, velocity, quality of code, and
individual developer productivity. Table 3 summarizes the main findings.

Open source projects have a number of substantial barriers that discourage
developers from joining and incur high costs for those who participate. These high
costs can prevent developers from ever joining a project. Even for a modest project
of just over 2000 lines of code, developers spent 164 minutes before completing
their first issue. Despite incurring new costs due to the unfamiliar environment
and workflow, microtask programming substantially reduced these barriers, mea-
sured both in time to initially complete the first line of code and the first task. For
larger projects with more to learn or for developers already familiar with micro-
task programming, the differences may be even larger. This suggests the potential
of microtasking for expanding the pool of contributors available to open source
projects.

We found that, compared to traditional programming, microtask programming
reduced onboarding time by a factor of 3.7. A key reason may be that micro-
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tasking required less of developers in terms of familiarizing themselves with the
codebase. Developers could only see the code for the function for each microtask,
and participants could not see the wrapper’s implementation. However, in tra-
ditional development, developers could see, read and learn the whole codebase.
The learning challenges traditional developers faced could not occur for microtask
participants.

Another key reason for the reduced onboarding time for microtasking may be
the availability of a preconfigured IDE. Without the preconfigured IDE, developers
spent substantial time time and effort setting up the programming environment,
interacting with Git to clone, commit, and push code, and learning how to cor-
rectly use a third-party API. These barriers mirror those reported as onboarding
challenges in open source projects [19,20]. The preconfigured environment enabled
developers to skip these activities, removing these barriers. This offer important
evidence about the value of a preconfigured environment for reducing onboarding
effort. This suggests the potential for adopting a preconfigured environment more
broadly, even beyond a microtasking context. Commercial tool vendors have begun
to offer features towards this end, such as GitHub Codespaces [54], Gitpod [22],
AWS Cloud9 [14]. These web-based integrated development cloud platforms typi-
cally consist of a code editor, compiler, command line, debugger, an API, source
version controller, or a graphical user interface (GUI) builder. However, none of
these have yet supported automatically generating implementation or review tasks,
TDD approach, offline Q/A, and gamification. These environments might be able
to offer even more support for onboarding by adopting more of these features.

By adding additional contributors to a project, the project velocity might be
assumed to increase. However, achieving this in practice is challenging, as coor-
dinating additional contributors may incur new costs. We found that microtask
programming was surprisingly successful in minimizing these costs, where increas-
ing the number of project contributors substantially increased project velocity.

By reducing the context available to each developer, microtask programming
might be expected to reduce quality. However, in domains outside programming,
prior work has found that microtasking can, increase, rather than decrease, qual-
ity [13,29]. Decomposing tasks into several microtasks was the key to achieving
higher quality, as contributors could focus on smaller tasks without interruption.
Our findings reveal that microtasking did not reduce quality. microtask program-
ming impacted the ways in which developers worked, requiring developers to write
unit tests and offering a review of their work by others more frequently. In tradi-
tional software development, developers may only receive feedback after submitting
all of their changes together through a pull request.

Microtasking reduced the productivity of individual developers, as measured
by the behaviors correctly implemented per developer hour. However, it increased
the final lines of code written per developer hour, largely by requiring developers
to write more tests. At the same time, nearly half of the code written by micro-
task participants was discarded, as others edited or replaced it. The gamification
elements may have helped motivate some participants while demotivating others.
These results illustrate the complexity of productivity, where many factors may
play an important role in shaping how much output developers create.

In this study, we focused only on the impact of microtasking on green-field
implementation and debugging of function bodies rather than on software mainte-
nance or design. Many questions remain about how microtasking might be adopted
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in maintenance or design tasks. Our study largely mirrors the focus of microtasking
and tool methodologies on supporting this aspect of work. Existing systems have
not yet offered ways to microtask maintenance work. More work has been done in
the area of design, such as envisioning ways in which the design tasks, which in
our study were completed by the experimenters, might be down by the crowd [78].
However, these new microtask design techniques have not yet been connected to
programming tasks, and it remains unclear how effective they might be for building
the task specifications used in microtask programming. In the meantime, asking a
client to construct these manually is clearly a substantial challenge. Much more
work is needed to design new techniques and approaches for these problems and
evaluate the impact of these approaches on microtasking.

8 Conclusions

This paper contributes findings from a controlled experiment comparing micro-
task programming to traditional programming, in the context of the task to imple-
ment and debug function bodies. Our findings show that, compared to traditional
programming, microtask programming reduces onboarding time, increases project
velocity, and decreases individual developer productivity. At the same time, the
quality code created is not significantly reduced.

These findings begin to lay a foundation for adopting microtask programming
in practice. In contexts where project velocity is important, there may be benefits
to adopting a microtask programming approach to implement individual modules.
To do so, developers might first describe desired functionality through an API,
which a crowd might then implement and debug through microtask programming.
More work remains to investigate how microtask programming might be adopted
to a broader range of contexts, such as maintenance or design tasks.
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